NO FILLERS NO PROP BLENDS NO PIXIE DUST SINCE 2005

Translation missing: en.products.product.regular_price $104.98
Regular Price $149.97

For a LIMITED TIME only buy Energon Pre-Workout with Protron Protein and get Allspark Hydration + EAA for FREE!($44.99 value)

Energon

  • Enfinity® Paraxanthine - Euphoric energy and focus with no crash.*
  • Senactiv® - Enhances endurance, Increases muscle energy and stimulates muscle cell renewal.*
  • VasoDrive-AP® - Enhanced muscle pumps and performance.*

Protron

  • Whey + Casein Blend - Sustained release for optimal recovery and growth.
  • Added MCTs - Healthy source of fats as well as adds to creamy texture.
  • Digestive Enzymes - Supports healthy nutrient breakdown.

Allspark

  • Full Blend of Electrolytes - Can replace key electrolytes lost during intense training.*
  • Full Serving of EAAs - Can Support recovery and muscle protein synthesis.*
  • ElevATP® - Can increase levels of endogenous ATP.*

Energon

L-Citrulline

Citrulline is a non-essential, non-protein amino acid that forms during the urea cycle and forms ornithine when combined with carbon dioxide. Citrulline is also a critical source of endogenous (natural) arginine, as it is rapidly and efficiently converted to arginine in the vascular endothelium and other tissues.

Citrulline’s benefits have been shown to be greater than its parent compound. While arginine undergoes direct hepatic (liver) metabolism through the enzyme arginase, citrulline bypasses hepatic metabolism entirely and it is delivered straight to the bloodstream. The result is that gut absorption and plasma (blood) bioavailability studies comparing citrulline and arginine have shown two things. First, citrulline is less readily destroyed and has greater absorption than arginine. Second, citrulline supplementation increases arginine levels more effectively than arginine supplementation itself.

This translates to promising results. For example, animal studies show a significant increase in anaerobic performance at a 250mg/kg/day serving of citrulline, while studies in humans implicate citrulline in both aerobic and anaerobic performance increases. As a critical part of the urea cycle, citrulline’s performance benefits are thought to be a result of its role in ammonia clearance. Citrulline is implicated in reducing the oxygen cost of muscle processes, along with increasing the rate of post-exercise ATP and phosphocreatine replenishment. As ATP and phosphocreatine are the body’s ‘exercise fuel,’ this may result in citrulline delaying time to exhaustion in aerobic and anaerobic exercise.

Beta Alanine

Carnosine is a bit of an odd duck: we know that it is crucial for muscle function, and that dietary sources of carnosine are essential, but we don’t know precisely how it works. Moreover, for decades, we had no idea how to increase intramuscular concentrations, as exogenous carnosine sources degraded in the body so fast as to be effectively useless.

Enter beta-alanine. Simply a different iteration of one of the amino acids that comprises carnosine itself (alanine), beta-alanine has proven to be the most effective means of significantly increasing intramuscular concentrations of carnosine – and therefore of promoting all of carnosine’s various beneficial effects on muscle performance. If that weren’t enough, beta-alanine has also demonstrated beneficial physiological effects independent of its parent compound. To understand why, though, we need to first understand some of the basics behind carnosine itself.

Carnosine, a cytoplasmic dipeptide synthesized from the precursors L-histidine and l-alanine, is present in high concentrations in skeletal muscle and plays a pivotal role as a “chemical buffer” in myocytes (muscle cells). It has long been known that carnosine concentrations are highest in glycolytic, rather than oxidative muscle fibers (roughly speaking, explosive vs., endurance muscle fibers, respectively), and thus long hypothesized that this amino acid is required for sustained performance during supramaximal exercise. Recent research demonstrates that carnosine exerts its physiological effects in long hypoxic (low oxygen) drives by functioning as a high-capacity pH buffer in skeletal muscle, preventing the pH ratio of plasma from dropping too low – and therefore preventing crucial pH-dependent processes such as protein synthesis from being inhibited by acidosis.

Despite its critical role in skeletal muscle anaerobic performance, intramyocellular synthesis of carnosine is rate-limited by the availability of l-alanine. Unfortunately, the majority of literature demonstrates that attempting to increase intramuscular levels of carnosine via either direct carnosine or alanine supplementation is largely ineffective due to carnosine/alanine pharmacokinetics. Enter beta-alanine. Research with beta-alanine demonstrates consistent and dose-dependent increases to intramuscular carnosine concentrations with beta-alanine supplementation, with certain studies showing an increase of 40-60% with chronic administration. These same literatures reveal a synergistic effect of exercise on beta-alanine supplementation, whereby the muscle adaptive changes associated with resistance training promote further intramuscular carnosine production in response to beta-alanine supplementation.

In simpler language, this essentially means that beta-alanine is a dietary supplement that promotes its own effects in combination with exercise. As you exercise, you simultaneously intensify beta-alanine’s physiological actions – both directly, as well as in the production of intramuscular carnosine. Once ingested, beta-alanine’s exercise-specific beneficial activity is well-established. Elevation of intramuscular carnosine content via beta-alanine supplementation has been shown to improve performance in the following ways.

  • Both acute and chronic increases in total work capacity, measured by total volume during exercise sessions.
  • Highly significant increases to TTE (total time to exhaustion), one of the most accurate and comprehensive measures of endurance. In various trials, beta-alanine supplementation has been shown to increase TTE by upwards of 20%.

Increases to total muscle power output in both acute and chronic trials, suggesting that beta-alanine’s most significant benefit is to those engaging in power-dependent resistance training.

In total, a significant body of research exists to suggest that beta-alanine may significantly increase muscle power output, strength, training volume and output, overall performance in hypoxic (oxygen-deprived) conditions and peak VO2 max (oxygen holding capacity).

These myriad benefits make beta-alanine both one of the most-studied, and most well-rounded dietary supplements. Beta-alanine not only has direct, actionable physiological effects, but also promotes critical muscle physiologic adaptations that promote its own effects.

Betaine Anhydrous

Betaine (trimethyl glycine) is found naturally in most living organisms. It is well known to protect non-mammalian animal life in conditions of osmotic stress (a rapid change in the amount of solute surrounding a cell), in addition to functioning as an osmolyte in mammalian (including human) tissues. Betaine is formed in cells as an oxidation product of choline and can be obtained in the diet from foods such as spinach and beets.

Though data on betaine is limited, and recent, the available literature suggests that this compound may have effects in a few areas. Studies on betaine using servings as little as 1.25g/day and up to 5g/day for up to 14 days have shown promising results. In one study, a 2.5g/day serving was found to enhance endurance and total repetition volume for the squat, bench press, and jump squat in healthy-exercised trained adults. A similar study using the same serving found that betaine use increased peak power and maximum peak power, along with force and the maintenance of both force and power in healthy, exercise-trained subjects.

Perhaps more interesting, however, is a study which examined betaine’s effect on the endocrine system. This study revealed that betaine may exert an effect on several endocrine processes given the proper conditions, causing the authors to hypothesize that long(er) term betaine supplementation may increase the hypertrophic response to resistance training.

N-Acetyl L-Carnitine

L-carnitine is a derivative of the amino acid lysine and, as certain conditions outpace the body’s ability to produce it, l-carnitine is considered a conditionally essential amino acid. While endogenous biosynthesis of l-carnitine from the amino acids lysine and methionine is sufficient for essential processes – along with dietary sources of carnitine from protein-rich red meat, for example – dietary supplementation of carnitine may pose benefits in certain physiological conditions.

Unfortunately, due to excess metabolism of l-carnitine by microorganisms in the small intestine, exogenous supplementation with oral l-carnitine has proved ineffective. ALCAR, an acetylated version of l-carnitine, has considerably higher oral bioavailability, due likely to only partial hydrolytic metabolism. Once in the bloodstream, ALCAR plays a fundamental role in the production of energy, acting as the catalyst for the beta-oxidation of long chain fatty acids by the mitochondria; regulating the CoA to Acyl-CoA ratio (necessary for the production of ATP); and the metabolism of carbohydrates. ALCAR also is an excitatory agent for neurons, increases neuronal transmission, and increases the production of neurotransmitters and neurohormones such as dopamine and serotonin.

Enfinity® Paraxanthine

Caffeine is widely known as being the world’s most popular dietary supplement ingredient. It provides energy and wakefulness through a process of inhibiting phosphodiesterase and adenosine. What most people don’t know however is, is that caffeine is made up of three powerful metabolites one metabolized by the liver, Theobromine, Theophylline, and Paraxanthine. Paraxanthine is the star of the show here as it does a large majority of the heavy lifting for caffeine’s felt effects, such as lipolysis, as well as the actual dopamine upregulation and feel-good effects we experience when taking caffeine. Paraxanthine also has stronger binding potencies for adenosine as well as can increase processing speed, improve response time, and promote more sustained attention during activities.

One of the most attractive qualities about paraxanthine is that it has a substantially shorter half-life than both theophylline and theobromine. At 3.1 hours, it’s less than half of the half-life, which leads to caffeine’s general half-life being around 4.1 hours. The one thing about caffeine in general is that its metabolism varies across genetic and ethnic distributions, so not everybody is going to react the same to the same amount of caffeine at the same time taken. In fact, there are fast, medium, and slow metabolizers of caffeine. From person to person, this can mean that caffeine’s half-life can vary anywhere from 1.5-10.5 hours. However, some research has shown that caffeine clearance can vary as much as 40x between consumers. What anecdotal evidence shows when all these individuals ingest paraxanthine, is that it leads to a much smoother and consistent experience for everyone. The shorter half-life works great for slow metabolizers too, especially without them having to worry about the consequences of theobromine and theophylline lingering around. Although studies on paraxanthine are preliminary, the evidence thus far points to the substance being a reliable replacement to traditional caffeine for those who are widely affected by caffeine’s addictive and often negative side effects.

VasoDrive-AP® (Isoleucyl-prolyl-proline (IPP) and Valyl-prolyl-proline (VPP) (from hydrolyzed milk casein)

VasoDrive-AP® is a proprietary ingredient derived from fermented casein. The fermentation process produces two lactotripeptides, Valyl-Prolyl-Proline (VPP) and Isoleucyl-Prolyl-Proline (IPP). Based on the available clinical evidence, these tri-peptides work together to reduce angiotensin converting enzyme (ACE).

In a recent meta-analysis researchers found 30 studies – all of which were randomized and some of which were double-blind – wherein Valyl-Prolyl-Proline (VPP) and Isoleucyl-Prolyl-Proline (IPP), either alone or in combination, exerted a statistically significant effect on improving endothelial function. In one of the analyzed studies, 25 men were challenged with casein hydrolysate standardized for tri-peptides in a randomized and placebo-controlled design. At the conclusion of the study, forearm blood flow, a key measure of endothelial function, was found to be increased by 33%. The researchers in this and other studies demonstrate that the tri-peptides that constitute VasoDrive-AP® exert an inhibitory effect on ACE. ACE, in turn, is a critical component of the renin-angiotensin (RAS) system, which regulates hemodynamics by controlling plasma fluid volume. While the precise mechanism has not been elucidated, researchers believe that the lactotripeptides in VasoDrive-AP® competitively inhibit ACE, thus decreasing the metabolism of bradykinin and systematically dilating the arteries and veins.

Cognizin® Citicoline

Choline is an essential nutrient involved in numerous metabolic pathways, including DNA regulation and repair, protein function, and metabolism. Perhaps most importantly, the critical neurotransmitter acetylcholine is produced directly from free choline via cholinergic neurons. Acetylcholine is then responsible for several functions itself, most crucially as the compound which induces muscular contraction, and as the neuromodulator partially responsible for modulating risk/reward, arousal, and enhancing memory.

Choline’s essential role as a substrate for acetylcholine, and therefore brain development, is well documented in animal models. These studies demonstrate that levels of free maternal choline have a direct and fundamental impact on prenatal brain development, with the enhancements or deficits lasting into adulthood. Choline’s enhancing effect is particularly prominent in the hippocampus. In humans, the hippocampus is primarily involved in the consolidation of memory (taking short, episodic memory and translating it into long-term memory) and the learning of new information. Acetylcholine is a critical component in these processes, as mentioned above, and choline may therefore play a potential role in these processes as well by providing the substrate for acetylcholine synthesis.

Citicoline (Cytidine 5’-diphosphocoline), also known as CDP-choline, is a potentially superior form of choline due to its ability to cross the blood brain barrier. In fact, most studies with neurological or nootropic effects used this form. In that regard, studies in otherwise healthy, normal adults demonstrated meaningful and statistically significant impacts on working memory, recall, and attention. We have chosen to use the clinically tested, Cognizin®, in this premium formula as our primary choline source. Unlike other synthetic stimulants that can cause a rapid decline in effectiveness after an initial burst of energy, Cognizin® can offer critical nutritional support for the brain that can help support needed focus and attention.

Senactiv® (Panax notoginseng (Root) & Rosa roxburghii (Fruit))

Senactiv®, derived from extracts of Panax notoginseng and Rosa roxburghii, has been shown to act in a few pathways to reenergize and rejuvenate cells within the body that take a beating daily. Ultimately this product falls within a category known as senolytics, or compounds that primarily work to induce cell death. This may not sound ideal as we need our cells to function, but the key is to ensure that these compounds are working on the right kinds of cells. The human body does contain many senescent cells, which are old cells and can deteriorate. How these senolytics work to promote health is by speeding up the breakdown of these older cells as well as encouraging the grow of new, vibrant cells. The other benefit of Senactiv® and its ingredients is its ability to protect against muscle damage. Ginseng has been shown to help reduce the proinflammatory state that is associated with rigorous training. Where this is going to benefit is to reduce inflammation and jumpstart the recovery process of torn down muscle fibers so these cells can begin to scar and grow stronger. The other benefit that ginseng has been able to show is it has been shown to improve VO2 max by about 20% when compared to a control group in studies. This improvement can significantly improve oxygen uptake to increase delivery to muscle cells for the ability to push harder and longer.

On another angle of recovery, Senactiv® has been shown to improve the rate of glycogen storage after exercise. When glycogen can be stored efficiently post exercise it could attenuate the structural damage associated with training by allowing those carbohydrates and sugars to go towards recovery.

Senactiv® is a unique blend of ingredients but with sound research and application behind but with its benefits towards improved cell regeneration, VO2 max, and recovery, it is a great addition to this hydration product.

Huperzia serrata Extract (1% Huperzine A)

Huperzia serrata is a compound found in the plant families of Huperziaceae, Lycopodiaceae, and Selaginella and is endemic to China. The Lycopodium alkaloid Huperizine-A, found in UNMATCHED DISSIDENT, was first isolated from a folk medicinal preparation in 1984.

Due to the potent anticholinesterase activities of Huperzine A, the compound has been evaluated in numerous in vitro, in vivo, and human trials. These data suggest that Huperzine’s Ache activities are most potent in the cortex, hippocampus, and striatum (at least in rats) – key regions in the brain responsible for forming, coordinating, and recalling memory. These effects are assisted by Huperzine A’s high oral bioavailability. Studies using microdialysis technique in rats, for example, showed that the response to Huperzine A was dose-dependent and substantially lowered the level of ACh in cortex.

Huperzine A has also shown promise in humans. Used as a reversible inhibitor of acetylcholinesterase, Huperzine A has shown positive benefits on cognition and as a therapy for individuals suffering from Alzheimer’s Disease. This is partly due to its inhibitory factors on acetylcholine but also its neuroprotective properties. In another study on memory and learning performance, 34 pairs of middle school students complaining of memory inadequacy were given a small dose of Huperzine A. The students were then match paired along several vectors and provided tests on working memory. The results of this study exhibited that HupA markedly improved the memory function of adolescent students.


Protron

The PROTRON supplement is emblematic of the strength and resilience of the TRANSFORMERS® robots, offering a high-powered protein blend that's as strong and versatile as the characters themselves. With a delicious flavor and formula designed to support muscle growth and recovery, PROTRON can help you build and maintain your power.

Protein powders need to – or at least should – have a purpose: to improve recovery times, and ultimately, body composition. But how does that occur? Or more specifically, what needs to happen in the body to recover from a workout, and subsequently improve body composition. To sum it up with one phrase, net protein balance needs to be positive.

When you vigorously train or exert yourself, a process called protein degradation (the breakdown of muscle protein) begins so that the body can fuel itself, and a process called muscle protein synthesis (the creation of muscle protein) slows down. Think of this like shutting off your engine (protein synthesis), to fuel your car (muscle protein breakdown). As this entire process plays out, the available pool of amino acids in skeletal muscle depletes, as they too are drawn in and broken down in the natural, catabolic process during exercise training.

While this situation is quite adequate during a training session, it’s precisely the opposite of what we want afterwards. At that point, we want the available pool of amino acids to increase, protein degradation to slow or stop, and muscle protein synthesis to increase. Enter protein supplements. Protein powders are a quick, convenient way to rapidly increase the available pool of amino acids in skeletal muscle.

However, not all proteins are created equal when assessed within the matrix of molecular triggers, enzymes, and amino acids that constitute skeletal muscle protein synthesis. Low quality blends, fillers, masking agents, and the like reduce the net protein content of many protein products, ultimately reducing lean muscle impact.

A quality protein supplement not only contains a high amount of protein, but the protein sources from which it draws need to be themselves high quality – and the benefit a particular protein source has can be assessed by analyzing its amino acid profile. Human skeletal muscle makes the most use out of a few amino acids (the BCAAs among them), and so a quality protein needs to have an amino acid profile that is optimal for this context.

We chose the protein blend for PROTRON with optimization in mind. Our mix of cold-processed undenatured whey protein concentrate, crossflow microfiltered whey protein isolate, and milk protein isolate has a complete amino acid profile that has been shown in research to increase nitrogen retention, lean muscle impact, and satiating ability (the feeling of fullness). This blend has also been specifically configured to provide both rapid and sustained additions to your body’s amino acid profile – meaning your recovery is not only supported immediately after a session, when you most need it, but over time as well.

Best of all, we have a fully transparent label for PROTRON. Meaning that not only do we disclose the protein sources themselves and their specific yields, but we have also disclosed the entire formula’s amino acid profile. You can see, for example, that each serving yields a full 2.6g of leucine – a leucine dose supported in the literature to maximally increase muscle protein synthesis.

Here is a more complete breakdown of each protein source:

Cold-processed undenatured whey protein concentrate: Whey protein concentrate is probably the most common form of whey protein you will find. However, how it is processed is where the benefit truly lies. This process of cold processed undenaturization preserves the molecular structure of the amino acid particles as well as the immune boosting benefits that it contains. This undenatured protein is also a rich source of amino acids, including those needed for the synthesis of glutathione, which is an important antioxidant that can be depleted by stress (exercise stress included). This makes it a great foundation for your post workout recovery nutrition.

Crossflow microfiltered whey protein isolate:
Whey protein isolate is an extremely “clean” form of whey protein. It yields a higher number of amino acids, half of which are from the essential amino acids (cannot be made by the body). Microfiltration eliminates a large majority of the fat and lactose from the whey, which makes it easily digestible and quickly absorbed into the body. This crossflow process uses a highly intricate method to isolate the protein. It is not subjected to chemicals and is thus left in its most natural state.

Milk Protein Isolate:
Milk protein isolate is obtained through the partial removal of non-protein materials from skim milk (lactose and other minerals). What you are left with is a dry product that contains more than 90% protein by weight. This product contains both casein and whey proteins in their original proportions found in milk, without combining separately produced casein and whey proteins. It contains very little fat and lactose and has a very high amino acid composition making it a perfect addition to this blend.

This blend has also been specifically configured to provide both rapid and sustained additions to your body’s amino acid profile – meaning your recovery is not only supported immediately after a session but will also carry you to your next meal. On top of that, our flavors are out of this world! We’ve also boosted this protein blend with digestive enzymes that will provide you with all the confidence that those nutrients you just supplied your body with will do their part in your quest for the optimal result!

DigeSEB® Digestive enzyme blend:

One can easily make the argument that dietary enzymes – and digestive enzymes – are the most consistently underrated and overlooked component to a supplementation regimen. These powerful little protein structures influence or outright control a vast, complex network of bodily functions. In a fitness-specific context, digestive enzymes play a crucial role in the breaking down of dietary carbohydrates, fats, and proteins into their constitutive parts, and therefore allow your body to use them in various processes (glycogenesis, protein synthesis, etc.).

Despite their critical function, many supplement companies overlook the necessity of digestive enzymes and do not include sufficient levels (and kinds) of enzymes in their products. For a whey product, in particular – a compound that requires significant digestion and breakdown – this is madness.

As usual, we take a much more comprehensive, clinical approach than the average. In the PROTRON supplement, we have included a digestive enzyme blend called DigeSEB® comprised of amylases, proteases, lactases, amylases, and cellulases, allowing for a full and complete breakdown of all PROTRON’s components. Research suggests that whey absorption through the blood is heavily impacted by its gastric digestibility. Using DigeSEB® ensures that the protein – along with its milk and whey sugars and fats – are completely broken down.

DigeSEB® ensures that the PROTRON supplement not only provides gourmet taste and clinical ingredients within the protein itself, but that your protein also increases the effectiveness of your pre- and post-workout nutrition in general.

Coconut Oil Creamer (Medium Chain Triglycerides):
Coconut oil made of 100% Medium chain triglycerides has been shown to have the greatest health benefits. MCTs are made up of a chemical structure that allows them to quickly and effectively bypass gastric uptake for transport directly to the liver for oxidation and then used for energy. Their unusual chemical structure and metabolic process has resulted in MCTs being a focus for a wide range of therapeutic and exercise supplement uses.

In the context of exercise science, recent research has shown that MCTs significantly (up to 65%) increase resting energy expenditure, along with dose-dependently reducing fatty acid deposition in adipose tissue. These results suggest that MCTs are effectively increasing the body’s metabolic response to food intake.


Allspark

Vitamin C (as ascorbic acid)

Vitamin C is historically best-known for the treatment and prevention of scurvy, though it has many other roles in the body. For example, vitamin C catalyzes or is a cofactor in eight enzymatic reactions involved in the synthesis of collagen, the nutrient carnitine, and several neurotransmitters necessary for the proper function of the brain.

In the contemporary context, vitamin C is best known as a potent antioxidant. In addition to its intrinsic activity as an antioxidant, vitamin C has been shown in in vitro trials to regenerate alpha-tocopherol (vitamin E). As an antioxidant, vitamin C combats the detrimental effects of a group of compounds called radical oxygen species that, when produced, degrade the lipid membrane of the cell and may cause internal damage. By “scavenging” these free radicals, vitamin C and other antioxidants form a defense against excess cellular damage.

Calcium (as calcium carbonate, calcium citrate, dicalcium malate (DimaCal®)

While best-known as the main bioactive in milk, and a compound that contributes to strong bones, calcium has numerous physiological effects in the body. As a key electrolyte it is responsible for mediating vascular contraction and vasodilatation, muscle function, nerve transmission, intracellular signaling, and hormonal secretion. Homeostatic regulation of calcium, which the body cannot produce, also requires sufficient levels of vitamin D. In the context of muscular contraction and relaxation, if calcium is required for strong contractions, magnesium is required for efficient relaxation of those muscle fibers.

DimaCal® is a trademarked form of dicalcium malate, which is calcium bonded with malic acid. It has been shown in studies to be a much better absorbed form of calcium and can maintain serum calcium levels for a much longer period. This can lead to a better maintained electrolyte level and greater performance where calcium is required.

Magnesium (as magnesium carbonate, magnesium citrate, magnesium bisglycinate chelate, magnesium chloride, magnesium lysinate glycinate chelate)

Magnesium, an often-overlooked electrolyte, is the second most abundant intracellular cation (after potassium). It is a cofactor to over three hundred enzymatic reactions in the body and is required for cellular energy metabolism, functioning of the sodium/potassium adenosine triphosphatase pump, nerve conduction, and ion transport. Magnesium is also required for the use of the body’s energy currency, ATP. To become biologically active, ATP must be bound to magnesium to form Mg-ATP. In addition, magnesium is necessary for the proper function of cells with calcium and potassium gated ion channels such as heart and muscle cells. Working alongside calcium, magnesium plays a crucial role in the body by regulating muscular contractions as well as cramp prevention. In the context of muscle health and rehydration, the longer and more intense a bout of physical activity is, the more magnesium is lost primarily through sweat and urine. This loss of electrolyte balance requires its replenishment so that physical performance can remain at its peak throughout the duration of the activity reducing the risk of injury or bodily harm. Regardless of the type of sport or exercise, muscular contractions and energy production could not occur consistently without the presence of magnesium.

Zinc (as zinc bisglycinate chelate)

As an essential mineral, like magnesium, zinc is also involved in a wide range of essential biological functions in the human body – and a requirement in the catalytic activity of over one hundred enzymes.

Most notably, zinc is vital for immune function, protein synthesis, cellular division, and DNA synthesis. For immune function, zinc is required for the function of a group of immune cells known as neutrophils and macrophages, which eliminate pathological cells and their products from the body.

With magnesium, sufficient levels of zinc are also necessary for the production and maintenance of healthy levels of testosterone.

Chloride (as magnesium chloride)

Chloride is one of the most important electrolytes in the human body. Like sodium and potassium, which will be discussed below, chloride creates specific channels in cell membranes which help to carry out different vital tasks. It is responsible for balancing the fluids on the inside of the cells with the fluids on the outside of the cells, as well as maintaining proper blood volume, blood pressure, and fluid pH. Chloride is also important for muscle and heart contraction as well as to aid in the carrying of nerve impulses between our nerve cells and our brain and the rest of the body. Additionally, chloride is needed to help red blood cells exchange oxygen and carbon dioxide in the lungs as well as playing a role in the digestion of foods by supporting hydrochloric acid production in the stomach. We often lose chloride through sweat and perspiration, which comes in the form of water and salt. Replenishment of chloride can come from utilizing salt (often found as sodium-chloride, or table salt), cheese, canned fish, and some processed meats. Overconsumption of some of these foods may not be beneficial for some individuals, so supplementation may be the best way for these individuals to replenish chloride in their bodies.

Sodium (as sodium citrate, sodium bicarbonate)

Sodium, like chloride above, is one of the most essential electrolytes for our body to utilize. As sodium is often found bound to chloride as sodium-chloride (salt), their function and benefits are going to be very similar in nature. Sodium helps to keep the water (amount of fluid outside of the body’s cells) and electrolyte balance of the body, while also aiding in the contraction and relaxation of muscles as well as conducting nerve impulses. While only 500mg of sodium is needed per day for these functions to occur, we as active individuals need far more sodium to maintain these functions. We mostly lose sodium through sweat and urine, so the more active we are/the more we sweat and the more we urinate, the more sodium is lost. Acquiring enough sodium through food and drink is crucial to establishing equilibrium again to maintain proper functioning and electrolyte balance within the body. The standard American diet is often overloaded with sodium and coupled with inactivity, which can lead to poor health and dysfunction. It is important to engage in physical activity of some kind most days and to eat a diet that is balanced in nutrients to maintain proper health. 

Potassium (as potassium citrate, coconut water concentrate, potassium glycinate complex)

Potassium, as sodium’s counterpart, acts as a critical electrolyte primarily by helping to maintain normal levels of fluids inside of our cells. Additionally, it helps muscles to contract and relax, aid in strong nerve function, as well as support normal blood pressure. It works very closely with sodium to create the membrane potential needed for the electrical currents that generate these functions to pass from one cell to the next. While the potassium levels in our body are regulated carefully, a diet lacking enough potassium (especially when combined with excess sodium) or one that contains too much potassium can eventually lead to certain types of dysfunctions and poor health status. When potassium levels in the body increase, the adrenal glands release the hormone aldosterone, which causes the kidneys to excrete excess potassium through the urine. When potassium levels are too low, aldosterone levels are suppressed, which can lead to conservation of potassium thus interfering with balance and negatively affecting transport channels that affect vital bodily functions. Potassium can be gotten from the diet in the form of fresh fruits and vegetables, such as sweet potatoes, beans, tomatoes, spinach and broccoli but supplementing can be an essential application as well to support an active lifestyle where excretion is higher than can be replenished through diet.

Vegan Fermented BCAA/EAA Blend (5g)

If one were to think of the body as a construction project, amino acids would be the most basic building materials: raw lumber, mortar, bricks, and so on. While the assembly of these building blocks is of course critically important to the function of the building – and one of the amino acids, leucine, controls its own assembly – the quality and availability of the materials themselves is more important. Not enough concrete? The foundation cracks and the building falls.

Your body is the exact same way. It is comprised of various amino acids, both essential and non-essential, that comprise the cellular basis of each cell in your body. When it comes down to skeletal muscle, the most important are the EAAs – or essential chained amino acids. Comprised of nine amino acids, these compounds effectively control the rate at which your muscle grows (hypertrophies), its contractile force, its endurance, and so on – to say they are massively important is an understatement. For this reason, they form the basis of any competently designed supplement protocol.

Collectively, as stated above, the essential amino acids are famous for their role in skeletal muscle protein synthesis and metabolism. Of the nine, leucine is both the most physiologically important with respect to muscle mass, and the most extensively studied. Data on leucine demonstrate this amino acid plays critical roles in stimulating skeletal muscle protein synthesis, and ribosomal biogenesis and assembly (the literal building of muscle tissue), along with playing a lesser role in insulin signaling and gluconeogenic processes. As a result of these diverse roles, leucine has been demonstrated to significantly stimulate skeletal muscle protein synthesis, and attenuate protein degradation, by both insulin-mediated and non-insulin mediated mechanisms.

Leucine’s insulin-mediated effects are the result of its activation of the classical insulin receptor substrate (IRS)/phosphatidylinositol (PI) 3-kinase (PI3K)/Akt/mTOR signal transduction pathway. In this pathway, the bonding of a substrate (glucose) eventually activates a compound known as Akt. Once phosphorylated and activated, Akt signals the release of the famous mammalian target of rapamycin (mTOR). mTOR then increases the translation of muscle-cell ribosomal proteins that increase ribosome biogenesis, which is the literal production of proteins. Leucine has additionally been shown to positively regulate protein synthesis independent of insulin. In certain trials where rapamycin and leucine were co-administered, rapamycin showed only partial inhibition of leucine’s effects on muscle protein synthesis.

In more practical terms, there is a significant body of evidence demonstrating the positive effect of amino acids on athletic performance. Extensive studies in exercise-trained populations reveal that, collectively, amino acids may:

  • Reduce total muscle soreness after intense resistance training, and/or further delay its onset.

  • Decrease muscle recovery time between bouts of intense resistance exercise training.

  • Increase lean body mass when used daily, in conjunction with diet and exercise.

L-Taurine

Through traditionally referred to as an amino acid due to its chemical structure, taurine is not an amino acid in the sense that leucine, alanine, or glutamine are. Its chemical status aside, taurine is considered one of the body’s most essential chemical compounds, as cardiovascular function, muscle development and function, along with optical and nervous systems in the body depend on its abundance. While data on taurine typically occurs with taurine in supplement combinations (with caffeine and other amino acids), these data nevertheless suggest that dietary supplementation with taurine may have beneficial effects on mental focus and alertness and may assist during times of increased physical exertion.

Coconut Water Concentrate (Cocos nucifera)

Coconut water, like the name implies, is the liquid that is found within the coconut itself. Often having a slightly sweet, nutty flavor, it also contains an adequate number of vitamins, minerals, and electrolytes like potassium, sodium, and magnesium. All these electrolytes, like discussed in sections above, can help to boost hydration status and replenish nutrients lost through exercise or rigorous everyday activities. Potassium is the highest concentration in coconut water at 600mg per cup (16% DV), which as discussed about it has a vital role in optimally functioning kidneys and strong muscle contractions. Potassium can also work to keep fluid levels and other electrolytes balanced during exercise. The high concentration of potassium in coconut water specifically can balance our sodium’s effects on blood pressure, and even lower blood pressure slightly, which can have its own benefits towards training and overall health and circulatory health. In addition to the added electrolytes that coconut water can provide, it also can provide a potent number of antioxidants that can aid in the neutralization of free radicals that can rapidly take over during intense training. By eliminating these free radicals, muscles will be able to perform longer and more efficiently, as well as be able to recover adequately. While general water consumption can be adequate as well, the added electrolytes coconut water can supply provides an added benefit that can improve performance and overall recovery.

ElevATP® (Ancient Peat Extract and Apple Extract)

Adenosine triphosphate and other ATP metabolites are involved in a number of biological processes including cardiac function, blood flow, muscle contraction and neurotransmission. ATP is the primary molecule that acts as a carrier for energy within cells. It has also often been studied that increased levels of ATP have shown increases in health and performance. Supplementation with exogenous ATP has often shown its ability to increase ATP concentrations in blood. Oral supplementation with ancient peat and apple extracts have exhibited their ability to increase intracellular and intramuscular ATP levels. ElevATP® is a blend these specific polyphenols that can work to increase endogenous ATP levels without a simultaneous increase in serum lactate. The significance of this is that usually with an increase in endogenous ATP there is an increase in intracellular free radicals. When these free radicals are not present, oxidative stress is mitigated and there is more potential for the beneficial increases in ATP to take center stage. These increases of ATP are essential as when available energy is increased it can have positive benefits in terms of increased power, strength, and overall exercise performance. One study looked at dosing ElevATP® against placebo and showed that the group who received ElevATP® saw a blood ATP increase of 45% on average along with no increase in oxidative blood glucose. This type of result has been shown repeatedly in studies and has given ElevATP® the reputation to be a beneficial compound for the goals of improving endurance, strength, power, and other training specific adaptations.

Ionic Trace Minerals (as Concentrace® AC)

Our bodies are high functioning machines and require a lot of support to continue to perform at a high-level day in and day out. A lot of these needs are difficult to be acquired by diet alone, so supplementation is critical. Minerals are included in these daily needs and are vital to the body’s many processes. ConcenTrace® AC is a high-quality trace mineral complex providing a comprehensive blend of nutrients that are often hard to acquire from diet alone. Its manufacturing process makes it up to 26x more concentrated than other colloidal trace minerals, adding to its benefits. These minerals contained in the product are catalysts for all the vitamins and other nutrients our body requires to function at an optimal level and maintain health. Some of these functions include electrolyte replacement, maintaining pH balance in the body, nourishing hair and skin, strengthening bones and joints, regulating the digestive system, and improving athletic performance.

AstraGin® (Astragalus membranaceous and Panax notoginseng root extracts)

AstraGin® is a trademarked combination of Astragalus membranaceous and Panax notoginseng that has been widely used in the supplement manufacturing industry for due to its clinically studied benefits for improving absorption of nutrients, peptides, and amino acids. Some statistics include increased absorption of creatine, leucine, citrulline, and other peptides by up to 67%, increased curcumin absorption by 92%, increases polyunsaturated fatty acids (from flax and fish oil) by 58% and 100% respectively, as well as can increase ATP production in the liver by 18%. AstraGin® has been shown capable of increasing muscle protein synthesis and increased mTOR through enhanced leucine absorption, which has an influence on improved glucose metabolism and mitochondrial functions. In addition to this benefit, AstraGin’s® ability to enhance polyunsaturated fatty acid absorption while also inhibiting saturated fatty acid absorption, thus reducing the risk of impaired glucose metabolism and mitochondrial function, can enhance ATP synthesis through mitochondrial respiration, and increase oxidative phosphorylation.

It has been further studied how Astragalus and Panax notoginseng specifically can protect mitochondria and enhance their function towards anti-aging. The proposed mechanism leads to Astragalus acting as a free radical scavenger, which can inhibit mitochondrial permeability transition and increase the activity of antioxidants against the peroxidation of membrane lipids. Panax notoginseng also works in a similar fashion through decreased free radical production. This lipid peroxidation has been shown to be a major cause of decreases in mitochondrial function. In addition to this, ensuring a highly permeable environment around the mitochondrial membrane is crucial for maintaining mitochondrial functions. This permeability allows for the passage of key electro chemicals to cross the gradient allowing for the process of energy development for the cells.

Energon

Hetzler, R. K., et al. “Effect of Paraxanthine on FFA Mobilization after Intravenous Caffeine Administration in Humans.” Journal of Applied Physiology (Bethesda, Md.: 1985), vol. 68, no. 1, 1 Jan. 1990, pp. 44–47, pubmed.ncbi.nlm.nih.gov/2312486/, doi:10.1152/jappl.1990.68.1.44; https://pubmed.ncbi.nlm.nih.gov/2312486/

Benowitz, Neal L., et al. “Sympathomimetic Effects of Paraxanthine and Caffeine in Humans*.” Clinical Pharmacology & Therapeutics, vol. 58, no. 6, Dec. 1995, pp. 684–691, doi:10.1016/0009-9236(95)90025-x; https://pubmed.ncbi.nlm.nih.gov/8529334/

Bromberg-Martin, Ethan S et al. “Dopamine in motivational control: rewarding, aversive, and alerting.” Neuron vol. 68,5 (2010): 815-34. doi:10.1016/j.neuron.2010.11.022; https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3032992/

Wardle, Margaret C et al. “Caffeine increases psychomotor performance on the effort expenditure for rewards task.” Pharmacology, biochemistry, and behavior vol. 102,4 (2012): 526-31. doi:10.1016/j.pbb.2012.06.016; https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3578395/

Orrú, Marco, et al. “Psychostimulant Pharmacological Profile of Paraxanthine, the Main Metabolite of Caffeine in Humans.” Neuropharmacology, vol. 67C, 1 Apr. 2013, pp. 476–484, doi:10.1016/j.neuropharm.2012.11.029; https://www.sciencedirect.com/science/article/abs/pii/S002839081200576X

Guerreiro, Serge, et al. “Paraxanthine, the Primary Metabolite of Caffeine, Provides Protection against Dopaminergic Cell Death via Stimulation of Ryanodine Receptor Channels.” Molecular Pharmacology, vol. 74, no. 4, 11 July 2008, pp. 980–989, doi:10.1124/mol.108.048207; https://pubmed.ncbi.nlm.nih.gov/18621927/

Ren, Xiangpeng, and Jiang-Fan Chen. “Caffeine and Parkinson’s Disease: Multiple Benefits and Emerging Mechanisms.” Frontiers in neuroscience vol. 14 602697. 17 Dec. 2020, doi:10.3389/fnins.2020.602697; https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7773776/

Orrú, Marco et al. “Psychostimulant pharmacological profile of paraxanthine, the main metabolite of caffeine in humans.” Neuropharmacology vol. 67 (2013): 476-84. doi:10.1016/j.neuropharm.2012.11.029; https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3562388/

Nehlig, Astrid. “Is Caffeine a Cognitive Enhancer?” Journal of Alzheimer’s Disease, vol. 20, no. s1, 14 Apr. 2010, pp. S85–S94, pubmed.ncbi.nlm.nih.gov/20182035/, doi:10.3233/jad-2010-091315; https://pubmed.ncbi.nlm.nih.gov/20182035/

Yoo, Choongsung et al. “Acute Paraxanthine Ingestion Improves Cognition and Short-Term Memory and Helps Sustain Attention in a Double-Blind, Placebo-Controlled, Crossover Trial.” Nutrients vol. 13,11 3980. 9 Nov. 2021, doi:10.3390/nu13113980; https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8622427/

Wadhawan, Manav, and Anil C. Anand. “Coffee and Liver Disease.” Journal of Clinical and Experimental Hepatology, vol. 6, no. 1, 1 Mar. 2016, pp. 40–46, doi:10.1016/j.jceh.2016.02.003; https://pubmed.ncbi.nlm.nih.gov/27194895/

Heath, Ryan D, et al. “Coffee: The Magical Bean for Liver Diseases.” World Journal of Hepatology, vol. 9, no. 15, 28 May 2017, pp. 689–696, doi:10.4254/wjh.v9.i15.689; https://pubmed.ncbi.nlm.nih.gov/28596816/

Gressner, Olav A., et al. “Identification of Paraxanthine as the Most Potent Caffeine-Derived Inhibitor of Connective Tissue Growth Factor Expression in Liver Parenchymal Cells.” Liver International, vol. 29, no. 6, July 2009, pp. 886–897, doi:10.1111/j.1478-3231.2009.01987.x; https://pubmed.ncbi.nlm.nih.gov/19291178/

Volkow, N D et al. “Caffeine increases striatal dopamine D2/D3 receptor availability in the human brain.” Translational psychiatry vol. 5,4 e549. 14 Apr. 2015, doi:10.1038/tp.2015.46; https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4462609/

Solinas, Marcello, et al. “Caffeine Induces Dopamine and Glutamate Release in the Shell of the Nucleus Accumbens.” The Journal of Neuroscience, vol. 22, no. 15, 1 Aug. 2002, pp. 6321–6324, doi:10.1523/jneurosci.22-15-06321.2002; https://www.jneurosci.org/content/22/15/6321

dePaula, Juliana, and Adriana Farah. “Caffeine Consumption through Coffee: Content in the Beverage, Metabolism, Health Benefits and Risks.” Beverages, vol. 5, no. 2, 1 June 2019, p. 37, doi:10.3390/beverages5020037; https://www.mdpi.com/2306-5710/5/2/37/htm

Guessous, Idris, et al. “Associations of Ambulatory Blood Pressure with Urinary Caffeine and Caffeine Metabolite Excretions.” Hypertension, vol. 65, no. 3, Mar. 2015, pp. 691–696, doi:10.1161/hypertensionaha.114.04512; https://pubmed.ncbi.nlm.nih.gov/25489060/

Stavric, B. “Methylxanthines: Toxicity to Humans. 3. Theobromine, Paraxanthine and the Combined Effects of Methylxanthines.” Food and Chemical Toxicology, vol. 26, no. 8, Jan. 1988, pp. 725–733, doi:10.1016/0278-6915(88)90073-7; https://pubmed.ncbi.nlm.nih.gov/3058562/

Okuro, Masashi et al. “Effects of paraxanthine and caffeine on sleep, locomotor activity, and body temperature in orexin/ataxin-3 transgenic narcoleptic mice.” Sleep vol. 33,7 (2010): 930-42. doi:10.1093/sleep/33.7.930; https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2894435/

Barnes, Peter J. “Theophylline”. American Journal of Respiratory and Critical Care Medicine. Volume 188, Issue 8. 03 May 2013. Doi: 10.1164/rccm.201302-0388PP; https://www.atsjournals.org/doi/full/10.1164/rccm.201302-0388PP

Purpura, Martin, et al; “Paraxanthine-based bioactive composition and method of use thereof”. United States Patent and Trademark Office. Patent US20230072854A1. 9 Mar. 2023; https://patents.google.com/patent/WO2021151094A1/

Wittayalertpanya, Supeecha, et al. “Paraxanthine/Caffeine Ratio: As an Index for CYP1A2 Activity in Polycyclic Aromatic Hydrocarbons Exposed Subjects.” Journal of the Medical Association of Thailand = Chotmaihet Thangphaet, vol. 86 Suppl 2, 1 June 2003, pp. S310-317; https://pubmed.ncbi.nlm.nih.gov/12930004/

Silveri MM et al. Citicoline enhances frontal lobe bioenergetics as measured by phosphorus magnetic resonance spectroscopy. NMR Biomed. 2008; 21(10):1066-75.

McGlade E. et al. Improved Attentional Performance Following Citicoline Administration in Healthy Adult Women. Food and Nutrition Sciences. 2012;3:769-773.

McGlade E, et al. The Effect of Citicoline Supplementation on Motor Speed and Attention in Adolescent Males. Journal of Attention Disorders. 2015; 1557-1246.

Nakazaki E, et al., J Nutr. 2021 Aug 7;151(8):2153-2160.

Fioravanti, M., & Buckley, A. E. (2006). Citicoline (Cognizin) in the treatment of cognitive impairment. Clinical interventions in aging, 1(3), 247–251. https://doi.org/10.2147/ciia.2006.1.3.247Babb SM, et al. Chronic citicoline increases phosphodiesters in the brains of healthy older subjects: an in vivo phosphorus magnetic resonance spectroscopy study. Psychopharmacology (Berl). (2002)

Silveri MM, et al. Citicoline enhances frontal lobe bioenergetics as measured by phosphorus magnetic resonance spectroscopy. NMR Biomed. (2008)

PNAS, Sep 20 2005, 102(38):13681-13686. L-citrulline and L-arginine supplementation retards the progression of high-cholesterol-diet-induced atherosclerosis in rabbits.

Br J Clin Pharma, 2008, 65:51-59  Pharmacokinetic and pharmacodynamic properties of oral L-citrulline and L-arginine: impact on nitric oxide metabolism.

Urology, Jan 2011, 77(1):119-22. Oral L-citrulline supplementation improves erection hardness in men with mild erectile dysfunction

Tangphao O, et al. Pharmacokinetics of intravenous and oral L-arginine in normal volunteers. Br J Clin Pharmacol. (1999).

Curis E, Crenn P, Cynober L. Citrulline and the gut. Curr Opin Clin Nutr Metab Care. (2007).

Bahri S, et al. Mechanisms and kinetics of citrulline uptake in a model of human intestinal epithelial cells. Clin Nutr. (2008).

Takeda K, et al. Effects of citrulline supplementation on fatigue and exercise performance in mice. J Nutr Sci Vitaminol (Tokyo). (2011)

Drozak J, et al Molecular identification of carnosine synthase as ATP-grasp domain-containing protein 1 (ATPGD1) . J Biol Chem. (2010)

Miyaji T, et al Expression profiles of carnosine synthesis-related genes in mice after ingestion of carnosine or ß-alanine . J Int Soc Sports Nutr. (2012)

Chez MG, et al Double-blind, placebo-controlled study of L-carnosine supplementation in children with autistic spectrum disorders . J Child Neurol. (2002)

Hipkiss AR On the enigma of carnosine’s anti-ageing actions . Exp Gerontol. (2009)

Boldyrev AA Does carnosine possess direct antioxidant activity . Int J Biochem. (1993)

Hipkiss AR, Michaelis J, Syrris P Non-enzymatic glycosylation of the dipeptide L-carnosine, a potential anti-protein-cross-linking agent . FEBS Lett. (1995)

Dutka TL, Lamb GD Effect of carnosine on excitation-contraction coupling in mechanically-skinned rat skeletal muscle . J Muscle Res Cell Motil. (2004)

Bauer K, Schulz M Biosynthesis of carnosine and related peptides by skeletal muscle cells in primary culture . Eur J Biochem. (1994)

Dunnett M, Harris RC Influence of oral beta-alanine and histidine supplementation on the carnosine content of the gluteus medius . Equine Vet J Suppl. (1999)

Kennedy D. O. (2016). B Vitamins and the Brain: Mechanisms, Dose and Efficacy--A Review. Nutrients8(2), 68. https://doi.org/10.3390/nu8020068

Tang L. L., Wang R., Tang X. C. (2005). Effects of huperzine A on secretion of nerve growth factor in cultured rat cortical astrocytes and neurite outgrowth in rat PC12 cells. Acta Pharmacol. Sin. 26, 673–67810.

Tuszynski M. H., Sang H., Yoshida K., Gage F. H. (1991). Recombinant human nerve growth factor infusions prevent cholinergic neuronal degeneration in the adult primate brain. Ann. Neurol. 30, 625–63610.

Wang C. Y., Zheng W., Wang T., Xie J. W., Wang S. L., Zhao B. L., et al. (2011). Huperzine A activates Wnt/β-catenin signaling and enhances the nonamyloidogenic pathway in an Alzheimer transgenic mouse model. Neuropsychopharmacology 36, 1073– 108910.

Wang L. M., Han Y. F., Tang X. C. (2000). Huperzine A improves cognitive deficits caused by chronic cerebral hypoperfusion in rats. Eur. J. Pharmacol. 398, 65–7210. Wang R., Xiao X. Q., Tang X. C. (2001a). Huperzine A attenuates hydrogen peroxideinduced apoptosis by regulating expression of apoptosis-related genes in rat PC12 cells. Neuroreport 12, 2629–2634.

Wang R., Zhang H. Y., Tang X. C. (2001b). Huperzine A attenuates cognitive dysfunction and neuronal degeneration caused by beta- amyloid protein-(1–40) in rat. Eur. J. Pharmacol. 421, 149–15610.1016/S0014-2999(01)01030-5. Wang X. D., Zhang J. M., Yang H. H., Hu G. Y. (1999).

Modulation of NMDA receptor by huperzine A in rat cerebral cortex. Acta Pharmacol. Sin. 20, 31–35. Wang Y. E., Yue D. X., Tang X. C. (1986). Anti-cholinesterase activity of huperzine A. [Article in Chinese]. Zhongguo Yao Li Xue Bao 7, 110–113.

Lever M, Sizeland PC, Bason LM, Hayman CM, Chambers ST. Glycine betaine and proline betaine in human blood and urine. Biochim Biophys Acta1994;1200:259–64.

Sakura N, Ono H, Nomura S, Ueda H, Fujita N. Betaine dose and treatment intervals in therapy for homocystinuria due to 5, 10-methylenetetrahydrofolate reductase deficiency. J Inherit Metab Dis1998;21:84–5.

Virtanen E, Junnila M, Soivio A. Effects of food containing betaine/amino acid additive on the osmotic adaptation of young Atlantic salmon, Salmo salar L. Aquaculture 1989;83:109–22.

Bloomer RJ, Farney TM, Trepanowski JF, McCarthy CG, Canale RE. Effect of betaine supplementation on plasma nitrate/nitrite in exercise-trained men. J Int Soc Sports Nutr. 2011 Mar 18;8:5.

Craig SA. Betaine in human nutrition. Am J Clin Nutr. 2004; 80: 539–549. Hoffman JR, Ratamess NA, Kang J, Rashti SL, Faigenbaum AD. Effect of betaine supplementation on power performance and fatigue. J Int Soc Sports Nutr. 2009 Feb 27;6:7.

Hoffman JR, Ratamess NA, Kang J, Gonzalez AM, Beller NA, Craig SA. Effect of 15 days of betaine ingestion on concentric and eccentric force outputs during isokinetic exercise. J Strength Cond Res. 2011 Aug;25(8):2235-41.

Lee EC, Maresh CM, Kraemer WJ, Yamamoto LM, Hatfield DL, Bailey BL, Armstrong LE, Volek JS, McDermott BP, Craig SA. Ergogenic effects of betaine supplementation on strength and power performance. J Int Soc Sports Nutr. 2010 Jul 19;7:27.

Ortiz-Costa S, Sorenson MM, Sola-Penna M (2002) Counteracting effects of urea and methylamines in function and structure of skeletal muscle myosin. Arch Biochem Biophys 408:272–278

Pryor JL, Craig SA, Swensen T. Effect of betaine supplementation on cycling sprint performance. J Int Soc Sports Nutr. 2012 Apr 3;9(1):12.

Trepanowski JF, Farney TM, McCarthy CG, Schilling BK, Craig SA, Bloomer RJ. The effects of chronic betaine supplementation on exercise performance, skeletal muscle oxygen saturation and associated biochemical parameters in resistance trained men. J Strength Cond Res. 2011 Dec;25(12):3461-71.

Lee, T., Wu, J., Jean, W. H., Condello, G., Alkhatib, A., Hsieh, C. C., Hsieh, Y. W., Huang, C. Y., & Kuo, C. H. (2021). Reduced stem cell aging in exercised human skeletal muscle is enhanced by ginsenoside Rg1. Aging, 13(12), 16567–16576. https://doi.org/10.18632/aging.203176

Pumpa KL, Fallon KE, Bensoussan A, Papalia S. The effects of Panax notoginseng on delayed onset muscle soreness and muscle damage in well-trained males: a double blind randomised controlled trial. Complement Ther Med. 2013 Jun;21(3):131-40.

Martin-Rincon M, Morales-Alamo D, Calbet JAL. Exercise-mediated modulation of autophagy in skeletal muscle. Scand J Med Sci Sports. 2018 Mar;28(3):772-81.

Li QJ, Nan Y, Qin JJ, Yang Y, Hao XJ, Yang XS. [Chemical constituents from medical and edible plants of Rosa roxburghii.] Zhongguo Zhong Ya Za Zhi. 2016 Feb;41(3):451-5.

Liang MTC, Podolka TD, Chuang WJ. Panax notoginseng supplementation enhances physical performance during endurance exercise. J Strength Cond Res. 2005 Feb;19(1):108-14.

Liu MH, Zhang Q, Zhang YH, Lu XY, Fu WM, He JY. Chemical analysis of dietary constituents in Rosa roxburghii and Rosa sterilis fruits. Molecules. 2016 Sep9;21(9):1204.

Kim DH. Chemical diversity of Panax ginseng, Panax quinquefolium, and Panax notoginseng. J Ginseng Res. 2012 Jan;36(1):1-15.

Turpeinen, A.; Kumpu, M.; Rönnback, M.; Seppo, L.; Kautiainen, H.; Jauhiainen, T.; Vapaatalo, H.; Korpela, R. Antihypertensive and cholesterol-lowering effects of a spread containing bioactive peptides IPP and VPP and plant sterols. J. Funct. Food 2009, 1, 260–265.

Turpeinen, A.; Ikonen, M.; Kivimaki, A.S.; Kautiainen, H.; Vapaatalo, H.; Korpela, R. A spread containing bioactive milk peptides Ile-Pro-Pro and Val-Pro-Pro, and plant sterols has antuhypertensive and cholesterol-lowering effects. Food Funct. 2012, 3, 621–627.1

Jauhiainen, T.; Rönnback, M.; Vapaatalo, H.; Wuolle, K.; Kautiainen, H.; Korpela, R. Lactobacillus helveticus fermented milk reduced arterial stiffness in hypertensive subjects. Int. Dairy J. 2007, 17, 1209– 1211.

Usinger, L.; Ibsen, H.; Linneberg, A.; Azizi, M.; Flambard, B.; Jensen, L. Human in vivo study of the renin-angiotensin-aldosterone system and the sympathetic activity after 8 weeks daily intake of fermented milk. Clin. Physiol. Funct. Imaging 2010, 30, 162–168.

Itakura, H.; Ikemoto, S.; Terada, S.; Konodo, K. The effect of sour milk on blood pressure in untreated hypertensive and normotensive subjects. J. Jpn. Soc. Clin. Nutr. 2001, 23, 26–31.

Hirota, T.; Ohki, K.; Kawagishi, R.; Kajimoto, Y.; Mizuno, S.; Nakamura, Y.; Kitakaze, M. Casein hydrolysate containing the antihypertensive tripeptides Val-Pro-Pro and Ile-Pro-Pro improves vascular endothelial function independent of blood pressure-lowering effects: Contribution of the inhibitory action of angiotensin-converting enzyme. Hypertens. Res. 2007, 30, 489–496.

Yasuda, K.; Aihara, K.; Komazaki, K.; Mochii, M.; Nakamura, Y. Effect of large intake of tablets containing “lactotripeptides (VPP, IPP)” on blood pressure, pulse rate and clinical parameters in healthy volunteers. J. Nutr. Food 2001, 4, 63–72.

Ishida, Y.; Sagitani, A.; Kaneko, K.; Nakamura, Y.; Mizutani, J.; Masuda, O.; Watanabe, M.; Sato, S.; Shioya, N. Antihypertensive effects of the tablet containing “lactotripeptide (IPP, VPP)” in subjects with high normal blood pressure or mild hypertension. J. Pharmacol. Ther. 2007, 35, 1249–1260


Protron

References:
Babayan, V. K. (1987) Medium-chain triglycerides and structured lipids. Lipids 22:417-420.

Bach, A. C. & Babayan, V. K. (1982) Medium-chain triglycerides: an update. Am. J. Clin. Nutr. 36:950-962.

Scalfi, L, Coltorti, A. & Contaldo, F. (1991) Postprandial thermogenesis in lean and obese subjects after meals supplemented with medium-chain and long-chain triglycerides. Am. J. Clin. Nutr. 53:1130-1133.

Seaton, T. B., Welle, S. L, Warenko, M. K. & Campbell, R. G. (1986) Thermic effect of medium-chain and long-chain triglycerides in man. Am. J. Clin. Nutr. 44:630-634.

Dulloo, A. G., Fathi, M., Mensi, N. & Girardier, L. (1996) Twenty-four-hour energy expenditure and urinary catecholamines of humans consuming low-to-moderate amounts of medium-chain triglycerides: a dose-response study in human respiratory chamber. Eur. J. Clin. Nutr. 50:152-155.

Flatt, J. P., Ravussin, E., Acheson, K. J. & Jequier, E. (1985) Effects of dietary fat on postprandial substrate oxidation and on carbohydrate and fat balances. J. Clin. Investig. 76:1019-1024.

Hill, J. O., Peters, J. C., Yang, D., Sharp, T., Kaler, M., Abumrad, N. N. & Greene, H. L. (1989) Thermogenesis in humans during overfeeding with medium-chain triglycerides. Metabolism 38:641-648

White, M. D., Papamandjaris, A. A. & Jones, P.J.H. (1999) Enhanced postprandial energy expenditure with medium-chain fatty acid feeding is attenuated after 14 d in premenopausal women. Am. J. Clin. Nutr. 69:883-889.

Astbury NM, et al. Dose-response effect of a whey protein preload on within-day energy intake in lean subjects. Br J Nutr. (2010)

Frestedt JL, et al. A whey-protein supplement increases fat loss and spares lean muscle in obese subjects: a randomized human clinical study. Nutr Metab (Lond). (2008)

Zhu K, et al. The effects of a two-year randomized, controlled trial of whey protein supplementation on bone structure, IGF-1, and urinary calcium excretion in older postmenopausal women. J Bone Miner Res. (2011)

Rennie MJ, et al. Control of the size of the human muscle mass. Annu Rev Physiol. (2004)

Anabolic signalling deficits underlie amino acid resistance of wasting, aging muscle

Nutrient signalling in the regulation of human muscle protein synthesis

Leucine supplementation improves muscle protein synthesis in elderly men independently of hyperaminoacidaemia

Tang JE, et al. Ingestion of whey hydrolysate, casein, or soy protein isolate: effects on mixed muscle protein synthesis at rest and following resistance exercise in young men. J Appl Physiol. (2009)

Whey protein stimulates postprandial muscle protein accretion more effectively than do casein and casein hydrolysate in older men

Dangin M, et al. The digestion rate of protein is an independent regulating factor of postprandial protein retention. Am J Physiol Endocrinol Metab. (2001)

Engelen MP, et al. Casein protein results in higher prandial and exercise induced whole body protein anabolism than whey protein in Chronic Obstructive Pulmonary Disease. Metabolism. (2012)

Pal S, Ellis V, Dhaliwal S. Effects of whey protein isolate on body composition, lipids, insulin and glucose in overweight and obese individuals. Br J Nutr. (2010)

Haraguchi FK, et al. Evaluation of biological and biochemical quality of whey protein. J Med Food. (2010)

de Aguilar-Nascimento JE, Prado Silveira BR, Dock-Nascimento DB. Early enteral nutrition with whey protein or casein in elderly patients with acute ischemic stroke: a double-blind randomized trial. Nutrition. (2011)

Candow DG, et al. Effect of whey and soy protein supplementation combined with resistance training in young adults. Int J Sport Nutr Exerc Metab. (2006)


What are you looking for?

Your cart